Conserved intermolecular salt bridge required for activation of protein kinases PKR, GCN2, and PERK.
نویسندگان
چکیده
The protein kinases PKR, GCN2, and PERK phosphorylate translation initiation factor eIF2alpha to regulate general and genespecific protein synthesis under various cellular stress conditions. Recent x-ray crystallographic structures of PKR and GCN2 revealed distinct dimeric configurations of the kinase domains. Whereas PKR kinase domains dimerized in a back-to-back and parallel orientation, the GCN2 kinase domains displayed an antiparallel orientation. The dimerization interfaces on PKR and GCN2 were localized to overlapping surfaces on the N-terminal lobes of the kinase domains but utilized different intermolecular contacts. A key feature of the PKR dimerization interface is a salt bridge interaction between Arg(262) from one protomer and Asp(266) from the second protomer. Interestingly, these two residues are conserved in all eIF2alpha kinases, although in the GCN2 structure, the two residues are too remote to interact. To test the importance of this potential salt bridge interaction in PKR, GCN2, and PERK, the residues constituting the salt bridge were mutated either independently or together to residues with the opposite charge. Single mutations of the Asp (or Glu) and Arg residues blocked kinase function both in yeast cells and in vitro. However, for all three kinases, the double mutation designed to restore the salt bridge interaction with opposite polarity resulted in a functional kinase. Thus, the salt bridge interaction and dimer interface observed in the PKR structure is critical for the activity of all three eIF2alpha kinases. These results are consistent with the notion that the PKR structure represents the active state of the eIF2alpha kinase domain, whereas the GCN2 structure may represent an inactive state of the kinase.
منابع مشابه
Cellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملCellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication
SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...
متن کاملAutophosphorylation in the activation loop is required for full kinase activity in vivo of human and yeast eukaryotic initiation factor 2alpha kinases PKR and GCN2.
The human double-stranded RNA-dependent protein kinase (PKR) is an important component of the interferon response to virus infection. The activation of PKR is accompanied by autophosphorylation at multiple sites, including one in the N-terminal regulatory region (Thr-258) that is required for full kinase activity. Several protein kinases are activated by phosphorylation in the region between ki...
متن کاملSevere acute respiratory syndrome coronavirus triggers apoptosis via protein kinase R but is resistant to its antiviral activity.
In this study, infection of 293/ACE2 cells with severe acute respiratory syndrome coronavirus (SARS-CoV) activated several apoptosis-associated events, namely, cleavage of caspase-3, caspase-8, and poly(ADP-ribose) polymerase 1 (PARP), and chromatin condensation and the phosphorylation and hence inactivation of the eukaryotic translation initiation factor 2alpha (eIF2alpha). In addition, two of...
متن کاملBrain ischemia and reperfusion activates the eukaryotic initiation factor 2alpha kinase, PERK.
Reperfusion after global brain ischemia results initially in a widespread suppression of protein synthesis in neurons, which persists in vulnerable neurons, that is caused by the inhibition of translation initiation as a result of the phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha). To identify kinases responsible for eIF2alpha phosphorylation [eIF2alpha(P)] d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 282 9 شماره
صفحات -
تاریخ انتشار 2007